Morphine activates opioid receptors without causing their rapid internalization.

نویسندگان

  • D E Keith
  • S R Murray
  • P A Zaki
  • P C Chu
  • D V Lissin
  • L Kang
  • C J Evans
  • M von Zastrow
چکیده

We have examined the endocytic trafficking of epitope-tagged delta and mu opioid receptors expressed in human embryonic kidney (HEK) 293 cells. These receptors are activated by peptide agonists (enkephalins) as well as by the alkaloid agonist drugs etorphine and morphine. Enkephalins and etorphine cause opioid receptors to internalize rapidly (t1/2 approximately 6 min) by a mechanism similar to that utilized by a number of other classes of receptor, as indicated by localization of internalized opioid receptors in transferrin-containing endosomes and inhibition of opioid receptor internalization by hypertonic media. Remarkably, morphine does not stimulate the rapid internalization of either delta or mu opioid receptors, even at high concentrations that strongly inhibit adenylyl cyclase. These data indicate that agonist ligands, which have similar effects on receptor-mediated signaling, can have dramatically different effects on the intracellular trafficking of a G protein-coupled receptor.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

mu-Opioid receptor internalization: opiate drugs have differential effects on a conserved endocytic mechanism in vitro and in the mammalian brain.

mu-Opioid receptors are the pharmacological targets of endogenous opioid peptides and morphine-like alkaloid drugs. Previous studies of transfected cells and peripheral neurons indicate that opioid receptors are rapidly internalized after activation by the alkaloid agonist etorphine but not after activation by morphine. To determine whether opioid receptors in the central nervous system are reg...

متن کامل

Morphine promotes rapid, arrestin-dependent endocytosis of mu-opioid receptors in striatal neurons.

Morphine activates mu-opioid receptors (MORs) without promoting their rapid endocytosis in a number of cell types. A previous study suggested that morphine can drive rapid redistribution of MORs in the nucleus accumbens, but it was not possible in this in vivo study to identify a specific membrane trafficking pathway affected by morphine, to exclude possible indirect actions of morphine via opi...

متن کامل

Mu-opioid receptor desensitization in mature rat neurons: lack of interaction between DAMGO and morphine.

Mu-opioid receptors (MORs) exhibit rapid desensitization and internalization during exposure to various opioid agonists. In some studies, however, morphine has been observed to produce little MOR desensitization or internalization. We examined desensitization in mature rat locus ceruleus (LC) neurons and confirmed that morphine is a very poor desensitizing agent, whereas [D-Ala2,N-MePhe4,Gly-ol...

متن کامل

Mu opioid receptor-effector coupling and trafficking in dorsal root ganglia neurons.

Morphine induces profound analgesic tolerance in vivo despite inducing little internalization of the mu opioid receptor (muOR). Previously proposed explanations suggest that this lack of internalization could either lead to prolonged signaling and associated compensatory changes in downstream signaling systems, or that the receptor is unable to recycle and resensitize and so loses efficacy, eit...

متن کامل

Chronic morphine treatment inhibits opioid receptor desensitization and internalization.

Chronic opioid receptor (OR) activation by morphine causes distinct cellular adaptations responsible for the development of tolerance. The present study examines the effect of chronic morphine exposure on the ability of high-efficacy agonists to mediate delta-OR (DOR) and mu-OR (MOR) uncoupling and internalization, two regulatory mechanisms contributing to rapid desensitization of OR function. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 271 32  شماره 

صفحات  -

تاریخ انتشار 1996